Initial Conditions

Currently we provide the following initial conditions:

Zero

All quantities are set to zero. This is the standard case to work with point sources or dynamic rupture.

Planarwave

A planar wave for convergence tests. The inital values are computed such that a planar wave in a unit cube is imposed. This scenario needs periodic boundary conditions to make sense. This is the only case where the old netcdf mesh format is prefered. After the simulation is finished the errors between the analytic solution and the numerical one are plotted in the \(L^1\)-, \(L^2\)- and \(L^\infty\)-norm.

Use cube_c to generate the meshes for the convergence tests: https://github.com/SeisSol/SeisSol/tree/master/preprocessing/meshing/cube_c

Superimposed Planarwave

Superimposed three planar waves travelling in different directions. This is especially interesting in the case of directional dependent properties such as for anisotropic materials.

Scholte

A Scholte wave to test elastic-acoustic coupling

Snell

Snells law to test elastic-acoustic coupling

Ocean

An uncoupled ocean test case for acoustic equations

How to implement a new initial condition?

New initial conditions can be easily implemented. Extend the class

seissol::physics::Initalfield

and implement the method

void evaluate(  double time,
                std::vector<std::array<double, 3>> const& points,
                const CellMaterialData& materialData,
                yateto::DenseTensorView<2,real,unsigned>& dofsQP ) const;

Here dofsQP(i,j) is the value of the \(j^\text{th}\) quantity at the points[i].